ANNUAL WATER OUALITY REPORT 2023

Presented By

Este es informe valioso sobre su agua potable, si usted desea este información en español nuestra oficina dispone del personal para atenderle.

PWS ID#: UTAH18011

Introduction

It is an honor to serve our community each day by delivering one of life's most precious resources: safe, clean, and reliable drinking water. Each year, we have the opportunity to share with you how well we have done by publishing our water quality results in a report. We are excited to share with you that in 2023, Kearns Improvement District's (KID) water quality met or exceeded all regulatory requirements. The water that we deliver is continually sampled and tested to ensure its quality. The test results are reviewed by Utah's Division of Drinking Water to ensure the quality of the water that is produced and delivered to you each day.

With the abundance of moisture received this winter, we anticipate that our lakes and streams will be replenished. Even with this abundance, we encourage you to please continue good conservation practices. Please visit KIDwater4UT.gov to find water-saving tips and conservation grant opportunities that will help you in this important effort. KID and its customers were recognized this past year for their conservation efforts. The U.S. Environmental Protection Agency's (U.S. EPA) WaterSense organization presented KID with the 2023

Excellence in Outreach and Education Award. This honor was only given to four water providers nationwide. Thank you for your efforts.

In the report, we have tried to anticipate the questions or concerns you might have regarding your water. If you still have questions, please feel free to contact me or John Lawson, KID's water quality specialist, at (801) 968-1011, and we will provide the information you need. Our commitment and promise to our customers, our employees, and our community is that you will know WE CARE!

F. Greg Anderson.

General Manager/CEO

Where Does My Water Come From?

KID buys 94 percent of the water delivered to our customers from the Jordan Valley Water Conservancy District (JVWCD), our wholesale water provider. Water sources include Jordanelle Reservoir, Deer Creek Reservoir, and local mountain springs and wells. The water is treated at the Jordan Valley Water Treatment Plant, Southeast Regional Water Treatment Plant, and Southwest Groundwater Treatment Plant. The remaining 6 percent of the water comes from 12 wells located in the Kearns area. KID staff operate and maintain these wells.

Source Water Assessment

A Water Source Protection Plan is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources. KID sources have a low to moderate susceptibility to contaminants.

JVWCD also has a Drinking Water Source Protection Plan available for review. Please call (801) 565-4300 if you have any questions or would like to review the plan. JVWCD sources have a low to moderate susceptibility to contaminants.

Community Participation

You are invited to attend out monthly Board of Trustees meetings. We generally meet the second Tuesday of each month at 5:30 p.m. at the KID office, 5350 West 5400 South.

Think Before You Flush!

Flushing unused or expired medicines can be harmful to your drinking water. Properly disposing of unused or expired medication helps protect you and the environment. Keep medications out of our waterways by disposing responsibly. To find a convenient drop-off location near you, please visit https://bit.ly/3IeRyXy.

Important Health Information

While your drinking water meets U.S. EPA's standard for arsenic, it does contain low levels of arsenic. U.S. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. U.S. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and linked to other health

effects such as skin damage and circulatory problems.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment.

By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water and the use of chlorine are probably the most significant public health advancements in human history.

How chlorination works:

- Potent Germicide Reduction of many diseasecausing microorganisms in drinking water to almost immeasurable levels.
- Taste and Odor Reduction of many disagreeable tastes and odors from foul-smelling algae secretions, sulfides, and decaying vegetation.
- Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.
- Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Protecting Your Water

B acteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated with other organisms that can cause disease.

In 2016 the U.S. EPA passed a regulation called the Revised Total Coliform Rule which requires water systems to take additional steps to ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and E. coli. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have procedures in place that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment and correct any problems quickly. The U.S. EPA anticipates greater public health protection under this regulation due to its more preventive approach to identifying and fixing problems that may affect public health. Though we are fortunate in having the highest-quality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this requirement helps us accomplish that goal.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/safewater/lead.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated

by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to longterm, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water.
- Monitoring and inspecting machinery, meters, gauges, and operating conditions.
- Conducting tests and inspections on water and evaluating the results.
- Maintaining optimal water chemistry.
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels.
- Documenting and reporting test results and system operations to regulatory agencies.
- Serving our community through customer support, education, and outreach.

So the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Definitions

 \bigcirc

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

0

cm-1: Ultraviolet absorbance (UVA) per centimeter (cm).

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

µmho/cm (micromhos per centimeter): A unit expressing the amount of electrical conductivity of a solution.

REGULATED SUBSTANCES

				Kearns Impre	ovement District	Jordan Valley Water ht District Conservancy District			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Alpha Emitters (pCi/L)	2019	15	0	0.08	-0.1–0.08	14.0 ¹	NA	No	Erosion of natural deposits
Antimony (ppb)	2022	6	6	NA	NA	0.001	NA	No	Discharge from petroleum refineries; Fire retardants; Ceramics; Electronics; Solder
Arsenic (ppb)	2023	10	0	5.1	1.2–5.1	4.3	NA	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2022	2	2	0.066	0.061–0.066	0.134 ²	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beta/Photon Emitters (pCi/L)	2019	50 ³	0	3.2	2.7–3.2	32.0 ¹	1.2-32.0 ¹	No	Decay of natural and human-made deposits
Cadmium (ppb)	2022	5	5	NA	NA	0.0003	NA	No	Corrosion of galvanized pipes; Erosion of natural deposits
Chlorine (ppm)	2023	[4]	[4]	0.91	0.08-0.91	1.5	0.01–1.5	No	Water additive used to control microbes
Chlorine Dioxide (ppb)	2023	[800]	[800]	NA	NA	0.04	NA	No	Water additive used to control microbes
Chlorite (ppm)	2023	1	0.8	NA	NA	0.6	0.1–0.6	No	By-product of drinking water disinfection
Cyanide (ppb)	2022	200	200	0.004	0.002-0.004	3.0	NA	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Ethylbenzene (ppb)	2022	700	700	0.05	NA	NA	NA	No	Discharge from petroleum refineries
Fluoride (ppm)	2023	4	4	0.752	0.217-0.752	0.9	NA	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAAs]– Stage 2 (ppb)	2023	60	NA	34.3	18.0–34.3	65.1	NA	No	By-product of drinking water disinfection
Nitrate (ppm)	2023	10	10	3.77	0.258–3.77	2.9	0.1–2.9	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Nitrite (ppm)	2021	1	1	NA	NA	1.0	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2022	50	50	3.4	0.5–3.4	2.4 ²	NA	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Thallium (ppb)	2023	2	0.5	NA	NA	0.0002	NA	No	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories
Total Organic Carbon [TOC] (ppm)	2023	$\mathrm{T}\mathrm{T}^4$	NA	NA	NA	2.9	NA	No	Naturally present in the environment
TTHMs [total trihalomethanes]–Stage 2 (ppb)	2023	80	NA	64.6	31.7–64.6	66.3	NA	No	By-product of drinking water disinfection
Turbidity ⁵ (NTU)	2022	ΤT	NA	0.15	NA	0.7^{1}	NA	No	Soil runoff
Turbidity (lowest monthly percent of samples meeting limit)	2020	TT = 95% of samples meet the limit	NA	NA	NA	100	NA	No	Soil runoff
Uranium (ppb)	2023	30	0	NA	NA	7.5	NA	No	Erosion of natural deposits
Xylenes (ppm)	2022	10	10	0.0017	NA	NA	NA	No	Discharge from petroleum factories; Discharge from chemical factories

Tap water samples were collected for lead and copper analyses from sample sites throughout the community													
	Kearns Improvement District					strict	rict Jordan Valley Water Conservancy District						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED SITES (90TH %ILE) TO		ABOVE AL/	AMOUNT DET (90TH %II	ECTED SITES ABOVE AL/ E) TOTAL SITES		VIOLATION	TYPICAL SOURCE		
Copper (ppm)	2022	1.3	1.3	0.1	98		0/30	0.316			0/306	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2022	15	0	1.	1.5		0/30	0/30 4.7 ⁶		1/306		No	Corrosion of household plumbing systems; Erosion of natural deposits
OTHER REGULATED SUBSTANCES													
							Kearns Improve	Jordan Valley Water rement District Conservancy District			alley Water ncy District		
SUBSTANCE (UNIT OF MEASURE)			YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG	1]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUI DETECT	NT TED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chloroform (ppb)			2023	NA	NA		53.3	23.0-53.3	27.8	7	NA	No	By-product of drinking water disinfection
Copper (ppm)			2023	NA	NA		0.0295	NA	0.03	8	NA	No	Erosion of naturally occurring deposits
Dibromoacetic Acid	(ppb)		2023	60	NA		1.01	NA	NA		NA	No	Disinfection by-product
HAA6 (ppb)			2023	NA	NA		NA	NA	70.9)	32.3–70.9	No	By-product of drinking water disinfection
Lead (ppm)			2023	NA	0.0		0.0019	NA	0.00	1	NA	No	Erosion of naturally occurring deposits
Radium 226 (pCi/L)			2023	NA	NA		NA	NA	1.3		-0.5–1.3	No	Decay of natural and human-made deposits
Radium 228 (pCi/L)			2022	NA	NA		0.61	0.10-0.61	1.3 ²	:	$-0.3-1.3^{2}$	No	Naturally occurring
Radon (pCi/L)			2021	NA	NA		NA	NA	10.1		0.001-10.1	No	Naturally occurring in soil
Total Dissolved Solid	s [TDS] (pp	m)	2022	1,000	NA		684	192–684	652 ²	2	28–652 ²	No	Runoff/leaching from natural deposits
Turbidity [groundwa (NTU)	ter sources]		2023	5.0	NA		NA	NA	0.6		0.01–0.6	No	Suspended material from soil runoff
Turbidity [surface wa (NTU)	iter source]		2023	0.3	TT = 95% samples n the lim	% of neet it	NA	NA	0.8		0.01–0.8	No	Suspended material from soil runoff

SECONDARY SUBSTANCES											
				Kearns Improvement District		Jordan Valle	ey Water Conservancy District				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	YEAR AMPLED SMCL MCLG		AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE		
Aluminum (ppb)	2023	200	NA	NA	NA	50.0	NA	No	Erosion of natural deposits; Residual from some surface water treatment processes		
Chloride (ppm)	2020	250	NA	NA	NA	161.0 ²	10.0-161.0 ²	No	Runoff/leaching from natural deposits		
Color (units)	2023	15	NA	NA	NA	10.0	0.1-10.0	No	Naturally occurring organic materials		
Iron (ppb)	2023	300	NA	NA	NA	313.0	NA	No	Leaching from natural deposits; Industrial wastes		
Manganese (ppb)	2023	50	NA	NA	NA	34.0	NA	No	Leaching from natural deposits		
pH (units)	2023	6.5-8.5	NA	NA	NA	8.8	6.8–8.8	No	Naturally occurring		
Silver (ppb)	2020	100	NA	NA	NA	0.7	NA	No	Industrial discharges		
Sulfate (ppm)	2022	250	NA	86.6	39.5–86.6	118.0^{7}	13.5–118.07	No	Runoff/leaching from natural deposits; Industrial wastes		
Zinc (ppm)	2023	5	NA	NA	NA	1.3	NA	No	Runoff/leaching from natural deposits; Industrial wastes		
UNREGULATED SUBSTANCES											
Kea			Kearns	Improvement Di	strict Jo	rdan Valley Water	^r Conservancy District				
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	AMOUN DETECTE	T RANGE A		AMOUNT DETECTED	UNT RANGE CTED LOW-HIGH		TYPICAL SOURCE		
Bromodichloromethane (ppb)		2023	11.9	6.60-	11.9	6.80	NA	Disinfection	by-product		
Bromoform (ppb)		2022	14.40	0.53-14.40		2.7 ¹	NA	Disinfection	by-product		
Dibromochloromethane (ppb)		2023	3.64	1.31–3.64		5.13	NA	Disinfection	by-product		
Nickel (ppb)		2023	NA	NA		3.5	NA	Naturally oc	curring		
Sodium (ppm)		2022	57.8	13.0–57.8		74.2 ²	8.0-74.2 ²	Erosion of natural deposits			

OTHER UNREGULATED SUBSTANCES										
		Koorne Impro	vomant District	lordan Vallov Wat	tar Concervancy District					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH		RANGE LOW-HIGH	TYPICAL SOURCE				
Alkalinity, Bicarbonate [HCO3] (ppm)	2023	NA	NA	225.0	50.7-225.0	Naturally occurring				
Alkalinity, Carbonate (ppm)	2023	NA	NA	4.0	NA	Naturally occurring				
Alkalinity, Total [as CaCO3] (ppm)	2023	NA	NA	225.0	14.0-225.0	Naturally occurring				
Calcium, Total (ppm)	2023	NA	NA	74.9	22.7–74.9	Erosion of naturally occurring deposits				
Chloride (ppm)	2021	NA	NA	161.1	10.0–161.1	Erosion of naturally occurring deposits				
Chromium, Total (ppb)	2020	NA	NA	9.4 ²	NA	Discharge from steel and pulp mills; Erosion of natural deposits				
Conductivity (µmho/cm)	2023	NA	NA	1,100.0	33.8-1,100.0	Naturally occurring				
Cyanide, Total (ppb)	2023	NA	NA	2.0	NA	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories				
Dichloroacetic Acid (ppb)	2023	19.3	3.33–19.3	NA	NA	By-product of drinking water disinfection				
Dissolved Organic Carbon (ppm)	2023	NA	NA	2.7	1.8–2.7	Naturally occurring				
Geosmin (ppt)	2023	NA	NA	12.3	NA	Naturally occurring organic compound associated with musty odor				
Gross Alpha Particle Activity (pCi/L)	2022	1.6	-0.9–1.6	7.2^{2}	$0.5-7.2^{2}$	Decay of natural and human-made deposits				
Gross Beta Particle Activity (pCi/L)	2022	9.4	2.6–9.4	11.0^{2}	$0.9 - 11.0^2$	Decay of natural and human-made deposits				
Hardness, Calcium (ppm)	2023	NA	NA	186.0	12.0–186.0	Erosion of naturally occurring deposits				
Hardness, Total [as CaCO3] (ppm)	2023	NA	NA	357.0	75.6–357.0	Erosion of naturally occurring deposits				
Lithium (ppb)	2023	NA	NA	16	NA	Erosion of natural deposits				
Magnesium (ppm)	2023	NA	NA	41.3	NA	Erosion of naturally occurring deposits				
Molybdenum (ppb)	2021	NA	NA	3.0	NA	By-product of copper and tungsten mining				
Orthophosphates (ppb)	2023	NA	NA	0.2	NA	Erosion of naturally occurring deposits				
Perfluorobutanesulfonic Acid [PFBS] (ppb)	2022	NA	NA	54.4	NA	NA				
Perfluorodecanoic Acid [PFDA] (ppb)	2020	12	0.47–12	34.0	NA	NA				
Potassium (ppm)	2023	NA	NA	10.9	NA	Erosion of naturally occurring deposits				
Total Suspended Solids [TSS] (ppm)	2023	NA	NA	4.0	NA	Erosion of naturally occurring deposits				
Trichloroacetic Acid (ppb)	2023	18.6	9.92–18.6	NA	NA	By-product of drinking water disinfection				
Turbidity (NTU)	2023	NA	NA	0.9	0.1–0.9	Suspended material from soil runoff				
UV-254 (cm-1)	2023	NA	NA	0.04	0.02-0.04	A measure of the concentration of UV-absorbing organic compounds, naturally occurring				
Vanadium (ppb)	2022	NA	NA	3.3	NA	Naturally occurring				

¹Sampled in 2020.

² Sampled in 2023.

³ The MCL for beta particles is 4 millirems per year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

⁴The value reported under Amount Detected for TOC is the lowest ratio between percentage of TOC actually removed and percentage of TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

⁵Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

⁶Sampled in 2019.

⁷Sampled in 2021.